The interaction between ionomer (ion-conducting polymer) and catalyst particles in porous electrodes of electrochemical energy-conversion devices is a critical yet poorly understood phenomenon that controls device performance. This interaction stems from that in the electrode precursor inks, which also governs porous-electrode morphology during formation. In this letter, we probe the origin of this interaction in solution to unravel the ionomer/particle agglomeration process. Quartz-crystal microbalance studies detail ionomer adsorption (with a range of charge densities) to model surfaces under a variety of solvent environments, and isothermal-titration-calorimetry experiments extract thermodynamic binding information to platinum-and carbon-black nanoparticles. Results reveal that under the conditions tested, ionomer binding to platinum is similar to carbon, suggesting that adsorption to platinum-on-carbon catalyst particles in inks is likely dictated mostly by hydrophobic interactions with the carbon surface. Furthermore, water-rich solvents (relative to propanol) promote ionomer adsorption. Finally, ionomer dispersions change with time, yielding dynamic binding interactions.