For low-mass (frequency GHz) axions, dark matter detection experiments searching for an axion-photon-photon coupling generally have suppressed sensitivity, if they use a static background magnetic field. This geometric suppression can be alleviated by using a high-frequency oscillating background field. Here, we present a high-level sketch of such an experiment, using superconducting cavities at ∼ GHz frequencies. We discuss the physical limits on signal power arising from cavity properties, and point out cavity geometries that could circumvent some of these limitations. We also consider how backgrounds, including vibrational noise and drive signal leakage, might impact sensitivity. While practical microwave field strengths are significantly below attainable static magnetic fields, the lack of geometric suppression, and higher quality factors, may allow superconducting cavity experiments to be competitive in some regimes.1 While the sensitivity of experiments such as ABRACADABRA is not directly related to absorbed power, the gaγγ sensitivity is still suppressed by ∼ (maL), compared to its theoretical scaling at higher frequencies [2].