Erosion from peat extraction areas is known to cause siltation of water courses and poor water quality. However, the main soil parameters affecting peat erosion and suspended sediment (SS) yields from different catchments are not well understood. This paper used peat properties (degree of humification, peat type, ash content, porosity, moisture content, bulk density, and shear strength) and novel erosion threshold measurements from intact soil cores to explain peat erodibility and spatial variations in SS concentrations (SSCs) and SS loads (SSLs) at 20 Finnish peat extraction sites. The erosion threshold measurements suggested that critical shear stresses for particle entrainment decrease with increasing degree of humification (von Post scale) and are significantly lower in well-decomposed peat than in slightly or moderately decomposed peat. Two critical shear stresses were obtained from moderately decomposed peat samples, indicating a degree of surface armoring by coarse peat fibers. Monitored long-term average SSC was highest at study sites with well-decomposed peat, while very fine-grained mineral subsoil explained some of the highest long-term SSC in areas where drainage ditches penetrated below the upper peat layer. Average SSL (kg d 21 ) at the study sites was best explained (R 2 5 0.89) by average discharge and surface peat decomposition level. Overall, this study provides new knowledge on peat erosion and critical shear stresses that can be used in water conservation and sediment management practices for cutover peatlands and other similar land uses.