Relentless progress has been made on composite materials, their manufacturing processes and their structural design in past few decades. Nevertheless, the approval of composite materials in all engineering disciplines is constrained due to its susceptibility to various kinds of defects during manufacturing stage viz porosity, foreign body inclusion, incorrect fiber volume, bonding defect, fiber misalignment, ply misalignment, incorrect curing cycle, wavy fiber, ply cracking, delamination, fiber microstructural defects etc. Hence there was a requirement of techniques to somehow overcome these defects during the service life of composites being used in various structures and equipment. This promising field of research has made great progress over the past several years, but many procedural encounters are still to be overcome, and there exists a great need for focused research to address several areas of concern. On the other hand, nature has materials that have curing potential and repair strategies ensuring their survival. Sustained development in the field will produce new curing chemistries that possess greater stability, faster kinetics. Tailor-made placement of curing agents is dynamic research subject at the cutting edge of self-curing. New bio-imitative curing agents are closely connected to vascular networks. The purpose of this technical paper is to sort the methodology in line with ongoing research efforts in composites. A perspective on current and future self-curing approaches using this biomimetic technique is offered.