Dairy goats were fed a total mixed ration with or without the inclusion of castor oil [40 g/kg of dry matter (DM)] to study the metabolism of ricinoleic acid (12-OH,cis-9-18:1). Ten goats, at 39.7 ± 4.0 d in milk, were individually penned and allocated at random to the 2 experimental diets. Goats were manually milked twice a day. Milk fatty acids (FA) were analyzed as methyl esters and hydroxyl groups were derivatized in trimethylsilyl ethers. Apart from ricinoleic acid, 6 FA were only detected in the milk of the castor oil group. Ricinoleic acid composed 0.3% of total FA in milk of the castor oil group, whereas the hydroxy-FA (8-OH-14:0, 10-OH-16:0, and 12-OH-18:0) and oxo-FA (8-oxo-14:0, 10-oxo-16:0, and 12-oxo-18:0) reached 7.5% of total FA in milk. We anticipate that these FA were derived from the metabolism of ricinoleic acid, although it was not clear if they were produced in the rumen or in the tissues. To confirm that, we conducted in vitro batch incubations repeated for 3 consecutive weeks with castor oil (40 g/kg of DM) and strained rumen fluid from 2 fistulated sheep. To examine the products formed over time, incubation tubes were stopped at 0, 6, 12, 24, 48, and 72 h. The results of the in vitro experiment showed that ricinoleic acid was metabolized in the rumen at a slow rate and the main products formed were 12-OH-18:0 and 12-oxo-18:0, by hydrogenation of the cis-9 double bond, followed by oxidation of the hydroxyl group, respectively. Our results suggest that the 12-OH-18:0 and 12-oxo-18:0 escape rumen and are further metabolized through partial β-oxidation in ruminant tissues. We propose that the 10-OH-16:0 and 8-OH-14:0 found in goat milk of the castor oil group are successive products of the β-oxidation of 12-OH-18:0, and the 10-oxo-16:0 and 8-oxo-14:0 are successive products of the 12-oxo-18:0 in tissues. Overall, our results indicate that ricinoleic acid is extensively metabolized in the rumen and tissues, producing mainly oxo- and hydroxy-FA that are further excreted in milk.