Composite materials are used in bone tissue engineering because they mimic the structure of the extracellular matrix of bone. In this work, polylactic acid (PLA) fiber scaffolds prepared by air-jet spinning technique, were doped with different concentrations of SBA-15 ceramic (0.05, 0.1, and 0.15 wt%). The SBA-15 ceramic powder was made by the Sol-Gel process. Physicochemical characterization of PLA, SBA-15, and composite fiber scaffold was done by XRD, SEM, BET, FTIR, TGA, mechanical test, and biocompatibility assay, which were performed in a cell culture model with osteoblast cells. Our results showed a random nanofibers composite scaffold with an improvement in the physicochemical properties. The PLA fiber diameter increases as increases the content of SBA-15, and the mechanical properties were dose-dependent. SBA-15 shows the well-ordered mesoporous hexagonal structure with a pore size of 5.8 ± 0.2 nm and a specific surface area with a value of 1042 ± 89 m 2 /g. PLA fibers and composites have thermal stability up to 300°C, and thermal decomposition in the range 316-367°C. In vitro biocompatibility results showed that PLA/SBA-15 composite scaffold had no cytotoxicity effect in terms of cell adhesion and viability of osteoblast cells. Furthermore, the doped SBA-15 with 0.05% wt onto the polymer matrix could be useful in biomedical applications for bone tissue engineering.