Background: Marine fish meat has been widely used for the extraction of bioactive peptides. This study was aimed to optimize the preparation of monkfish muscle peptides (LPs) using response surface methodology (RSM) and explore the antioxidant activities of <1 kDa LPs. Methods: Peptides were prepared from the muscles of monkfish (Lophius litulon), and five proteases were tested to hydrolyze muscle proteins. The hydrolysate that was treated using neutrase showed the highest degree of hydrolysis (DH) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities. Results: The optimized conditions were as follows: water/material ratio of 5.4:1, a time span of 5 h, pH of 7.0, enzyme concentration of 2000 U/g, and temperature of 45 °C; the maximum DPPH scavenging activity and DH were 92.861% and 19.302%, respectively. LPs exhibited appreciable antioxidant activities, including DPPH radical, hydroxyl radical, 2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radical, and superoxide anion scavenging activities. LPs attenuated H2O2-related oxidative injury in RAW264.7 cells, reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels. Conclusion: We concluded that LPs could be an ideal source of bioactive peptides from monkfish and also have pharmaceutical potential.