Curcumin is a unique molecule naturally obtained from rhizomes of Curcuma longa. Curcumin has been reported to act on diverse molecular targets like receptors, enzymes, and co-factors; regulate different cellular signaling pathways; and modulate gene expression. It suppresses expression of main inflammatory mediators like interleukins, tumor necrosis factor, and nuclear factor κB which are involved in the regulation of genes causing inflammation in most skin disorders. The topical delivery of curcumin seems to be more advantageous in providing a localized effect in skin diseases. However, its low aqueous solubility, poor skin permeation, and degradation hinder its application for commercial use despite its enormous potential. Lipid-based nanocarrier systems including liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lyotropic liquid crystal nanoparticles, lipospheres, and lipid nanocapsules have found potential as carriers to overcome the issues associated with conventional topical dosage forms. Nano-size, lipophilic nature, viscoelastic properties, and occlusive effect of lipid nanocarriers provide high drug loading, hydration of skin, stability, enhanced permeation through the stratum corneum, and slow release of curcumin in the targeted skin layers. This review particularly focuses on the application of lipid nanocarriers for the topical delivery of curcumin in the treatment of various skin diseases. Furthermore, preclinical studies and patents have also indicated the emerging commercialization potential of curcumin-loaded lipid nanocarriers for effective drug delivery in skin disorders.