Antimicrobial peptides (AMPs) constitute a large and diverse group of molecules with antibacterial, antifungal, antiviral, antiprotozoan, and anticancer activity. In animals, they are key components of innate immunity involved in fighting against various pathogens. Proline-rich (Pr) AMPs are characterized by a high content of proline (and arginine) residues that can be organized into Pro-Arg-Pro motifs. Such peptides have been described in many invertebrates (annelids, crustaceans, insects, mollusks) and some vertebrates (mammals). The main objective of this review is to present the diversity of invertebrate PrAMPs, which are associated with the presence of cysteine-rich domains or whey acidic protein domains in the molecular structure, in addition to the presence of characteristic proline-rich regions. Moreover, PrAMPs can target intracellular structures in bacteria, e.g., 70S ribosomes and/or heat shock protein DnaK, leading to the inhibition of protein synthesis and accumulation of misfolded polypeptides in the cell. This unique mechanism of action makes it difficult for pathogens to acquire resistance to this type of molecule. Invertebrate PrAMPs have become the basis for the development of new synthetic analogues effective in combating pathogens. Due to their great diversity, new highly active molecules are still being searched for among PrAMPs from invertebrates.