PurposeAccurate dose calculation is important in both target and low dose normal tissue regions for brain stereotactic radiosurgery (SRS). In this study, we aim to evaluate the dosimetric accuracy of the two advanced dose calculation algorithms for brain SRS.MethodsRetrospective clinical case study and phantom study were performed. For the clinical study, 138 SRS patient plans (443 targets) were generated using BrainLab Elements Voxel Monte Carlo (VMC). To evaluate the dose calculation accuracy, the plans were exported into Eclipse and recalculated with Acuros XB (AXB) algorithm with identical beam parameters. The calculated dose at the target center (Dref), dose to 95% target volume (D95), and the average dose to target (Dmean) were compared. Also, the distance from the skull was analyzed. For the phantom study, a cylindrical phantom and a head phantom were used, and the delivered dose was measured by an ion chamber and EBT3 film, respectively, at various locations. The measurement was compared with the calculated doses from VMC and AXB.ResultsIn clinical cases, VMC dose calculations tended to be higher than AXB. It was found that the difference in Dref showed > 5% in some cases for smaller volumes < 0.3 cm3. Dmean and D95 differences were also higher for small targets. No obvious trend was found between the dose difference and the distance from the skull. In phantom studies, VMC dose was also higher than AXB for smaller targets, and VMC showed better agreement with the measurements than AXB for both point dose and high dose spread.ConclusionThe two advanced calculation algorithms were extensively compared. For brain SRS, AXB sometimes calculates a noticeable lower target dose for small targets than VMC, and VMC tends to have a slightly closer agreement with measurements than AXB.