2021
DOI: 10.21203/rs.3.rs-713430/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Physics informed deep learning to super-resolve and cross-calibrate solar magnetograms

Abstract: Super-resolution techniques aim to increase the resolution of images by adding detail. Compared to upsampling techniques reliant on interpolation, deep learning-based approaches learn features and their relationships across the training data set to leverage prior knowledge on what low resolution patterns look like in higher resolution images. As an added benefit, deep neural networks can learn the systematic properties of the target images (i.e.\ texture), combining super-resolution with instrument cross-cali… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?