Abstract. A Long Short-Term Memory (LSTM) neural network is proposed to predict hurricane-forced significant wave heights (SWH) in the Caribbean Sea (CS) based on a dataset of 20 CS, Gulf of Mexico, and Western Atlantic hurricane events collected from 10 buoys from 2010–2020. SWH nowcasting and forecasting are initiated using LSTM on 0-, 3-, 6-, 9-, and 12-hour horizons. Through examining study cases Hurricanes Dorian (2019), Sandy (2012), and Igor (2010), results illustrate that the model is well suited to forecast hurricane-forced wave heights. Forecasts are highly accurate with regard to observations. For example, Hurricane Dorian nowcasts had correlation (R), root mean square error (RMSE), and mean absolute percentage error (MAPE) values of 0.99, 0.16 m, and 2.6 %, respectively. Similarly, on the 3-, 6-, 9-, and 12-hour forecasts, results produced R (RMSE; MAPE) values of 0.95 (0.51 m; 7.99 %), 0.92 (0.74 m; 10.83 %), 0.85 (1 m; 13.13 %), and 0.84 (1.24 m; 14.82 %), respectively. However, the model also consistently over-predicted the maximum observed SWHs. To improve models results, additional research should be geared towards improving single-point LSTM neural network training datasets by considering hurricane track and identifying the hurricane quadrant in which buoy observations are made.