Physics‐informed surrogates for electromagnetic dynamics using Transformers and graph neural networks
O. Noakoasteen,
C. Christodoulou,
Z. Peng
et al.
Abstract:A novel use case for two data‐driven models, namely, a Transformer and a convolutional graph neural network (CGNN) is proposed. The authors propose to use these models for emulating the dynamics of electromagnetic (EM) propagation and scattering. The Transformer translates a past sequence into a future sequence by constructing representations from the past and using it to predict the future, taking all of its own previous predictions as input at each step of prediction. The CGNN updates the current state of at… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.