2024
DOI: 10.1049/mia2.12463
|View full text |Cite
|
Sign up to set email alerts
|

Physics‐informed surrogates for electromagnetic dynamics using Transformers and graph neural networks

O. Noakoasteen,
C. Christodoulou,
Z. Peng
et al.

Abstract: A novel use case for two data‐driven models, namely, a Transformer and a convolutional graph neural network (CGNN) is proposed. The authors propose to use these models for emulating the dynamics of electromagnetic (EM) propagation and scattering. The Transformer translates a past sequence into a future sequence by constructing representations from the past and using it to predict the future, taking all of its own previous predictions as input at each step of prediction. The CGNN updates the current state of at… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 38 publications
0
0
0
Order By: Relevance