2015
DOI: 10.1134/s0036029515050146
|View full text |Cite
|
Sign up to set email alerts
|

Physics of the solid-phase oxidation and reduction of metals

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

2
10
0
4

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 21 publications
(16 citation statements)
references
References 2 publications
2
10
0
4
Order By: Relevance
“…Shell of carbides on the surface of spinelide (a) and graphite (b) and the shell of a carbon-free Fe -Cr alloy on the surface of a spinelide crystal embedded in dunite (c). The work of the authors.Thereby, the results of experiments do not correspond to the concepts of the mechanism of either direct or indirect reduction, but they fully confirm the electron theory of reduction developing by the authors[11][12][13][14].The essence of this theory is in the fact that in any reduction reaction the reducing agent (solid carbon, gaseous CO, or any other) does not interact with the oxide molecules of the metal being reduced (they are not in the oxide phase), but with anions of the oxygen-type crystal lattice of oxides. The products of this interaction C + O 2− = CO + Va 2− are gas molecules (CO) and anion vacancies (Va 2− ) in an oxide lattice.…”
mentioning
confidence: 54%
“…Shell of carbides on the surface of spinelide (a) and graphite (b) and the shell of a carbon-free Fe -Cr alloy on the surface of a spinelide crystal embedded in dunite (c). The work of the authors.Thereby, the results of experiments do not correspond to the concepts of the mechanism of either direct or indirect reduction, but they fully confirm the electron theory of reduction developing by the authors[11][12][13][14].The essence of this theory is in the fact that in any reduction reaction the reducing agent (solid carbon, gaseous CO, or any other) does not interact with the oxide molecules of the metal being reduced (they are not in the oxide phase), but with anions of the oxygen-type crystal lattice of oxides. The products of this interaction C + O 2− = CO + Va 2− are gas molecules (CO) and anion vacancies (Va 2− ) in an oxide lattice.…”
mentioning
confidence: 54%
“…1 - 100,00 Fe; 59 Mg,37,66 О,6,20 Fe,11,54 Mn Один такой комплекс в состоянии производить 100 - 300 тыс. т стали в год.…”
Section: обсуждение результатов исследованияunclassified
“…На сегодняшний день процессы восстановления металла в комплексных оксидах мало изучены. В работах [1][2][3][4][5][6][7] экспериментально подтверждено восстановление металла в объёме комплексных оксидов типа сидеритовой, хромовой, ильменитовой руды. Однако в таких комплексных оксидах металл концентрируется в крупные частицы разной формы, локально и в отдельных зёрнах.…”
Section: Introductionunclassified