Nanopillar array photovoltaics give unique advantages over today's planar thin films in the areas of optical properties and carrier collection, arising from their 3D geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars. Therefore, a well known Si and GaAs material are used in the design and studied in this nanowire application. This work calculates and analyses the performance of the coaxial GaAs nanowire and compared with that of Si nanowire using a semi-classical method. The current-voltage characteristics are investigated for both under dark and AM1.5G illumination. It is found that GaAs nanowire gives almost double efficiency with its counterpart Si nanowire. Their TCAD simulations can be validated reasonably with that of published experimental result.