Nano-TiO2 has always been one of the most important topics in the research of photocatalysts due to its special activity and stability. However, it has always been difficult to obtain nano-TiO2 with high dispersion, a small particle size and high photocatalytic activity. In this paper, nano-TiO2 powder was prepared by combining the high-gravity technique and direct precipitation method in an impinging stream-rotating packed bed (IS-RPB) reactor followed by Fe3+ in-situ doping. TiOSO4 and NH3·H2O solutions were cut into very small liquid microelements by high-speed rotating packing, and the mass transfer and microscopic mixing of the nucleation and growth processes of nano-TiO2 were strengthened in IS-RPB, which was beneficial to the continuous production of high quality nano-TiO2. Pure TiO2 and iron-doped nano-TiO2 (Fe-TiO2) were obtained in IS-RPB and were investigated by means of X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) and Brunauer–Emmett–Teller (BET) analysis, which found that pure TiO2 had a particle size of about 12.5 nm, good dispersibility and a complete anatase crystal at the rotating speed of packing of 800 rpm and calcination temperature of 500 °C. The addition of Fe3+ did not change the crystalline structure of TiO2. Iron was highly dispersed in TiO2 without the detection of aggregates and was found to exist in a positive trivalent form by XPS. With the increase of iron doping, the photoresponse range of TiO2 to visible light was broadened from 3.06 eV to 2.26 eV. The degradation efficiency of gaseous toluene by Fe-TiO2 under ultraviolet light was higher than that of pure TiO2 and commercial P25 due to Fe3+ effectively suppressing the recombination of TiO2 electrons and holes; the highest efficiency produced by 1.0% Fe-TiO2 was 95.7%.