Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Root rot is one of the common diseases of Lycium barbarum. Pathogens can cause devastating disasters to plants after infecting host plants. This study investigated the effect of arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices inoculation on phenylpropane metabolism in L. barbarum and evaluated its resistance to root rot. The experiment was set up with AMF inoculation treatments (inoculated or not) and root rot pathogen-Fusarium solani inoculation treatments (inoculated or not). The results showed that AMF was able to form a symbiosis with the root system of L. barbarum, thereby promoting plant growth significantly and increasing plants’ resistance to disease stress. The plant height of AMF-colonized L. barbarum increased by 24.83% compared to non-inoculated diseased plants. After inoculation with AMF, the plant defense response induced by pathogen infection was stronger. When the enzyme activity of the leaves reached the maximum after the onset of mycorrhizal L. barbarum, phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, and 4-coumaric acid-CoA ligase increased by 3.67%, 31.47%, and 13.61%, respectively, compared with the non-inoculated diseased plants. The products related to the lignin pathway and flavonoid pathway downstream of phenylpropane metabolism such as lignin and flavonoids were also significantly increased by 141.65% and 44.61% compared to nonmycorrhizal diseased plants. The activities of chitinase and β-1,3-glucanase increased by 36.00% and 57.96%, respectively. The contents of salicylic acid and jasmonic acid were also 17.7% and 31.63% higher than those of nonmycorrhizal plants in the early stage of plant growth, respectively. The results indicated that AMF significantly promoted plant growth and enhanced disease resistance by increasing enzyme activities and the production of lignin and flavonoids.
Root rot is one of the common diseases of Lycium barbarum. Pathogens can cause devastating disasters to plants after infecting host plants. This study investigated the effect of arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices inoculation on phenylpropane metabolism in L. barbarum and evaluated its resistance to root rot. The experiment was set up with AMF inoculation treatments (inoculated or not) and root rot pathogen-Fusarium solani inoculation treatments (inoculated or not). The results showed that AMF was able to form a symbiosis with the root system of L. barbarum, thereby promoting plant growth significantly and increasing plants’ resistance to disease stress. The plant height of AMF-colonized L. barbarum increased by 24.83% compared to non-inoculated diseased plants. After inoculation with AMF, the plant defense response induced by pathogen infection was stronger. When the enzyme activity of the leaves reached the maximum after the onset of mycorrhizal L. barbarum, phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, and 4-coumaric acid-CoA ligase increased by 3.67%, 31.47%, and 13.61%, respectively, compared with the non-inoculated diseased plants. The products related to the lignin pathway and flavonoid pathway downstream of phenylpropane metabolism such as lignin and flavonoids were also significantly increased by 141.65% and 44.61% compared to nonmycorrhizal diseased plants. The activities of chitinase and β-1,3-glucanase increased by 36.00% and 57.96%, respectively. The contents of salicylic acid and jasmonic acid were also 17.7% and 31.63% higher than those of nonmycorrhizal plants in the early stage of plant growth, respectively. The results indicated that AMF significantly promoted plant growth and enhanced disease resistance by increasing enzyme activities and the production of lignin and flavonoids.
To delve into the growth and physiological adaptations exhibited by the economically vital black wolfberry (Lycium ruthenicum) upon inoculation with arbuscular mycorrhizal fungi (AMF) under varying levels of saline–alkaline stress A series of pot experiments were conducted in a gradient saline–alkaline environment (0, 200, 400 mM NaCl: NaHCO3 = 1:1). One-year-old cuttings of black wolfberry, inoculated with two AMF species—Funneliformis mosseae (Fm) and Rhizophagus intraradices (Ri)—served as the experimental material, enabling a comprehensive analysis of seedling biomass, chlorophyll content, antioxidant enzyme activities, and other crucial physiological parameters. This study demonstrated that both Fm and Ri could form a symbiotic relationship with the root of Lycium ruthenicum. Notably, Fm inoculation significantly bolstered the growth of the underground parts, while exhibiting a remarkable capacity to scavenge reactive oxygen species (ROS), thereby effectively mitigating membrane oxidative damage induced by stress. Additionally, Fm promoted the accumulation of abscisic acid (ABA) in both leaves and roots, facilitating the exclusion of excess sodium ions from cells. Ri Inoculation primarily contributed to an enhancement in the chlorophyll b (Chlb) content, vital for sustaining photosynthesis processes. Furthermore, Ri’s ability to enhance phosphorus (P) absorption under stressful conditions ensured a steady influx of essential nutrients. These findings point to different strategies employed for Fm and Ri inoculation. To holistically assess the saline–alkaline tolerance of each treatment group, a membership function analysis was employed, ultimately ranking the salt tolerance as Fm > Ri > non-mycorrhizal (NM) control. This finding holds paramount importance for the screening of highly resilient Lycium ruthenicum strains and offers invaluable theoretical underpinnings and technical guidance for the remediation of saline–alkaline soils, fostering sustainable agricultural practices in challenging environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.