2022
DOI: 10.1371/journal.pcbi.1010275
|View full text |Cite
|
Sign up to set email alerts
|

Physiological characterization of electrodermal activity enables scalable near real-time autonomic nervous system activation inference

Abstract: Electrodermal activities (EDA) are any electrical phxenomena observed on the skin. Skin conductance (SC), a measure of EDA, shows fluctuations due to autonomic nervous system (ANS) activation induced sweat secretion. Since it can capture psychophysiological information, there is a significant rise in the research work for tracking mental and physiological health with EDA. However, the current state-of-the-art lacks a physiologically motivated approach for real-time inference of ANS activation from EDA. Therefo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
35
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
2
1

Relationship

2
7

Authors

Journals

citations
Cited by 34 publications
(35 citation statements)
references
References 62 publications
0
35
0
Order By: Relevance
“…Combining these processes, we get a second-order differential equation given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*} \tau _{d} \tau _{r} \frac{d^{2} y_{p} (t)}{dt^{2}}+(\tau _{d}+\tau _{r}) \frac{dy_{p} (t)}{dt} +y_{p} (t)=u(t). \tag{2} \end{equation*}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau _{r}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau _{d}$\end{document} are the rise and fall times, respectively, of the SC response assumed to be constant for the entire duration of the experiment following the assumption made in previous studies [9] , [10] , [11] , [24] , [27] . \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $u(t)$\end{document} is defined as a summation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $N$\end{document} weighted and shifted impulse functions.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Combining these processes, we get a second-order differential equation given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*} \tau _{d} \tau _{r} \frac{d^{2} y_{p} (t)}{dt^{2}}+(\tau _{d}+\tau _{r}) \frac{dy_{p} (t)}{dt} +y_{p} (t)=u(t). \tag{2} \end{equation*}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau _{r}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau _{d}$\end{document} are the rise and fall times, respectively, of the SC response assumed to be constant for the entire duration of the experiment following the assumption made in previous studies [9] , [10] , [11] , [24] , [27] . \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $u(t)$\end{document} is defined as a summation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $N$\end{document} weighted and shifted impulse functions.…”
Section: Methodsmentioning
confidence: 99%
“…The extraction of reliable arousal state information from Skin Conductance (SC) signals calls for the effective separation of tonic and phasic components, a process crucial to understanding distinct physiological stimuli [8] . Previous studies [10] , [11] , [24] , [25] , [26] , [27] , [28] , [29] , [30] , [31] , [32] , [33] , [34] , [35] , [36] , [37] , [38] have made strides towards this goal, predominantly employing single-channel data. This study innovates by applying a multi-channel approach, concurrently separating tonic and phasic components from SC data, using physiological priors as an inherent part of the optimization problem.…”
Section: Introductionmentioning
confidence: 99%
“…A commonly used measure of EDA is the continuous exosomatic recording of skin conductance (SC). 70 The SC level or the tonic component of EDA is the slow-moving, spontaneous electrical fluctuations of the sweat gland activity that results from an interaction between tonic discharges of sympathetic innervation and local factors like skin temperature and hydration. 71 The fast-changing element of the EDA signal is referred to as the Skin Conductance Response (SCR) and SCR is correlated with phasic sympathetic nervous discharges.…”
Section: Electrodermal Activity and Ansmentioning
confidence: 99%
“…The performance of emotion detection highly relies on decomposition methods, so it's essential to find a reliable decomposition technique that will improve the human emotion monitoring system. Researchers have proposed a variety of EDA decomposition methods such as non-negative deconvolution, dynamic causal modelling, cubic-spline-based nonnegative sparse deconvolution (cvxEDA), compressed sensing, non-negative sparse deconvolution (SparsEDA) [3] and BayesianEDA [4]. The performance of the decomposition methods can be evaluated using feature extraction methods and machine learning algorithms.…”
Section: Introductionmentioning
confidence: 99%