The deciduous tree species Sassafras tzumu (Hemsl.) Hemsl., unique to China, holds significant economic and ecological value. However, its seeds exhibit poor storage tolerance and rapid decline in seed vigor. This study primarily investigates the desiccation tolerance of S. tzumu seeds. The results show that S. tzumu seeds have recalcitrant seed characteristics, with a semi-inactivation water content (at which point half of the seeds lose viability) of 20.7%. As desiccation progresses, seed viability decreases significantly; at a reduced water content of 11.93%, only 18.3% of the seeds remain viable, while most lose their viability completely. Relative electrolytic leakage (REC) and H2O2 content gradually increase during this process, while MDA content initially decreases before increasing again, exhibiting distinct trends compared to antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). SOD and POD activities exhibit an initial increase followed by a rapid decrease, whereas CAT activity shows a decline followed by a rapid increase. Dehydration to 15% water content in seeds is a key turning point in the process of seed desiccation in S. tzumu, and CAT is an enzyme key to maintaining seed viability. Both the accumulation of toxins and the decline in the activity of the antioxidant system contribute to the susceptibility of S. tzumu seeds to drought stress, a characteristic common to all recalcitrant seeds. To maintain high seed viability above 70% during storage, it is crucial to ensure water content above 23.58%.