. Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). Am J Physiol Regul Integr Comp Physiol 286: R174-R181, 2004. First published September 11, 2003 10.1152/ajpregu.00593.2002Herbivores of temperate and arctic zones are confronted during winter with harsh climatic conditions and nutritional shortness. It is still not fully understood how large ungulates cope with this twofold challenge. We found that red deer, similar to many other northern ungulates, show large seasonal fluctuations of metabolic rate, as indicated by heart rate, with a 60% reduction at the winter nadir compared with the summer peak. A previously unknown mechanism of energy conservation, i.e., nocturnal hypometabolism associated with peripheral cooling, contributed significantly to lower energy expenditure during winter. Predominantly during late winter night and early morning hours, subcutaneous temperature could decrease substantially. Importantly, during these episodes of peripheral cooling, heart rate was not maintained at a constant level, as to be expected from classical models of thermoregulation in the thermoneutral zone, but continuously decreased with subcutaneous temperature, both during locomotor activity and at rest. This indicates that the circadian minimum of basal metabolic rate and of the set-point of body temperature regulation varied and dropped to particularly low levels during late winter. Our results suggest, together with accumulating evidence from other species, that reducing endogenous heat production is not restricted to hibernators and daily heterotherms but is a common and well-regulated physiological response of endothermic organisms to energetically challenging situations. Whether the temperature of all tissues is affected, or the body shell only, may simply be a result of the duration and degree of hypometabolism and its interaction with body size-dependent heat loss. hypometabolism; hypothermia; winter adaptation; body temperature regulation MANY UNGULATES ARE CAPABLE of withstanding long and cold winters with low food availability. Large body size, excellent fur insulation, and countercurrent heat exchange mechanisms contribute to minimize energy requirements under cold load. However, reduced heat loss alone can hardly explain the substantially lowered metabolic rate (MR) of northern ungulates and the apparently ubiquitous decrease of voluntary food intake during winter (4,13,18,28,35,37,42,44,59,63,72). The search for mechanism to explain reduced energy expenditure during winter has so far produced equivocal results. Studies on white-tailed deer [Odocoileus virginianus (66)], moose [Alces alces (56, 57)], roe deer [Capreolus capreolus (69)], and wapiti [Cervus elaphus nelsoni (49)] reported that animals had reduced MRs during winter. However, other studies failed to find any differences between summer and winter basal metabolic rate (BMR) and concluded that seasonal variations in MR were merely consequences of different activity levels and failures to measure animals within thei...