To elucidate the effect of rice protein on the regulation of triglyceride transport to reduce triglyceride levels, growing and adult male Wistar rats were fed with casein and rice protein for 2 weeks. With the intake of rice protein, the gene and protein expressions of cluster determinant 36 (CD36), microsomal triglyceride transfer protein (MTP), fatty acid transport protein-2 (FATP-2), and fatty acid-binding protein-1 (FABP-1) were, respectively, downregulated in growing and adult rats, suggesting rice protein could effectively regulate triglyceride transport. As a result, rice protein significantly reduced plasma levels of triglyceride and fatty acids, while hepatic accumulations of triglyceride and fatty acids were also decreased via rice protein. The present study demonstrates that RP exerts regulatory effects on CD36, MTP, FATP-2, and FABP-1 expression in growing and adult rats, revealing a link to triglyceride-lowering actions and the modulations of triglyceride transport exerted by rice protein. Results suggest that the aging process cannot attenuate the depression of CD36, MTP, FATP, and FABP 19 expression to reduce triglyceride levels induced by rice protein.