Waterlogging can occur in salt-affected turfgrass sites. The objective of this study was to characterize growth and carbohydrate, lipid peroxidation, and nutrient levels in the leaves and roots of two perennial ryegrass (Lolium perenne) cultivars (Catalina and Inspire) to short-term simultaneous waterlogging and salinity stress. Previous research showed that ‘Catalina’ was relatively more tolerant to salinity but less tolerant to submergence than ‘Inspire’. Both cultivars were subjected to 3 and 7 days of waterlogging (W), salinity [S (300 mm NaCl)], and a combination of the two stresses (WS). Across the two cultivars, W alone had little effect on the plants, while both S and WS alone significantly decreased plant height (HT), leaf fresh weight (LFW), leaf dry weight (LDW), root fresh weight (RFW), root dry weight (RDW), leaf nitrogen (LN) and carbon (LC), and leaf and root K+ (RK+), and increased leaf water-soluble carbohydrate (LWSC) and root water-soluble carbohydrate (RWSC), malondialdehyde (MDA), and Na+ content, compared with the control. A decline in chlorophyll content (Chl) was found only at 7 days of WS. Leaf phosphorus (LP) content either decreased or remained unchanged but root phosphorus content increased under S and WS. Reductions in LFW and LDW were found at 3 days of S and WS, whereas RFW and RDW were unaffected until 7 days of S or WS. Both cultivars responded similarly to W, S, and WS with a few exceptions on RDW, LWSC, leaf MDA (LMDA), and root MDA (RMDA). Although WS caused declines in Chl and resulted in higher leaf Na+ (LNa+) and root Na+ (RNa+) than S at 7 days of treatment, S and WS had similar effects on growth, carbohydrate, MDA, N, C, and phosphorus, and K+ content across the two cultivars. The results suggested that S alone largely accounted for the negative effects of WS on plant growth and physiology including alteration of carbohydrate and nutrient content as well as induction of lipid peroxidation.