The progress of urbanization and technologies led to the rise of anthropogenic activities, which consequently have high production of pollutants, affecting ecosystems, including aquatic biomes. One of the contaminating forms that cause environmental impact is heavy metals, which are produced in large quantities by inappropriate disposal of batteries, residential, industrial, agricultural and mining waste. Such components generate bioaccumulative effects, classifying them as dangerous elements that must be removed from environment. However, in species such as plants, this bioaccumulative effect can be exploited, aiming a biotechnological and bioengineering application to remove metals, called phytoremediation, employing floating aquatic macrophytes, which have high potential due to their properties retaining contaminants. Results obtained were conclusive for adaptation of Eichhornia crassipes and Salvinia auriculata as better phytoremediation agents, respectively, while Lemna minor and Pistia stratiotes fit better in biomonitoring, which have resistance to certain concentrations of metal when related to Cd, Hg, Zn, Ni and Pb.