The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content in growing pigs (25–50 kg). A total of 72 (Duroc × Landrace × Yorkshire) growing pigs with initial weights of 25.79 ± 0.23 kg were randomly divided into three treatments. The pigs were fed corn–soybean meal (CON), corn–soybean–miscellaneous meals (CSM), and corn–miscellaneous meals (CMM). Each treatment included six replicates with four pigs per pen (n = 24, 12 barrows and 12 gilts). Soybean meal accounted for 22.10% of the basal diet in the CON group. In the CSM group, miscellaneous meals partially replaced soybean meal with a mixture of 4.50% rapeseed meal, 3.98% cottonseed meal, and 4.50% sunflower meal. In the CMM group, miscellaneous meals entirely replaced soybean meal with a mixture of 8.50% rapeseed meal, 8.62% cottonseed meal, and 8.5% sunflower. The results showed that compared with the CON, the CSM and CMM groups significantly improved the average daily gain (ADG) of growing pigs during the 25–50 kg stage (p < 0.05) but had no effects on average daily feed intake (ADFI) and average daily feed intake/average daily gain (F/G) (p > 0.05). Moreover, the CMM group significantly reduced nutrient apparent digestibility of gross energy compared with the CON group. The serum biochemical parameters results showed that the CSM group significantly improved the contents of total protein (TP) compared with the CON group (p < 0.05). The CMM group significantly improved the contents of total protein (TP), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) compared with the CON group in serum (p < 0.05). In comparison with the CON group, the CMM group also significantly improved lysine (Lys), threonine (Thr), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), arginine (Arg), and citrulline (Cit) levels in serum (p < 0.05). However, the CMM group significantly decreased non-essential amino acid content glycine (Gly) in serum compared with CON (p < 0.05), while compared with the CON group, the CSM and CMM groups had no significant effects on the relative abundance, the alpha-diversity, or the beta-diversity of fecal microbiota. Moreover, compared with the CON group, the CSM group significantly increased butyric acid and valeric acid contents of short-chain fatty acids (SCFAs) in feces (p < 0.05). In contrast to the CON group, the CMM group significantly reduced the contents of SCFAs in feces, including acetic acid, propionic acid, and isobutyric acid (p < 0.05). Collectively, the results of the present study indicate that miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) can partially replace the soybean meal and significantly improve the growth performance of growing pigs during the 25–50 kg stage. Thus, miscellaneous meals are a suitable protein source as basal diets to replace soybean meals for 25–50 kg growing pigs. These results can be helpful to further develop miscellaneous meals as a functional alternative feed ingredient to soybean meal.