Plants are sessile organisms and are, consequently, exposed to a wide variety of environmental stresses, both abiotic and biotic, exerted by their surroundings. The most common of these is temperature. Within the range of temperatures tolerable to plants, the response to low temperature, particularly near-freezing temperature, is well understood. Plants have evolved a number of adaptive mechanisms to meet the challenge of low temperature. In Arabidopsis, flowering is accelerated by prolonged exposure to cold, a process called vernalization. The epigenetic silencing of the FLOWERING LOCUS C (FLC) (Michaels and Amasino 1999;Sheldon et al. 1999) is central to the vernalization process (Sung and Amasino 2005), and this silencing has been attributed to the activities of the VERNALIZATION1 (VRN1), VERNAL-IZATION2 (VRN2), and VERNALIZATION INSENSI-TIVE3 (VIN3) genes (Gendall et al. 2001;Levy et al. 2002;Sung and Amasino 2004). Cold acclimation is another well-characterized response to low temperature (Guy 1990). Plants become tolerant to freezing temperatures by being previously exposed to short periods of low but nonfreezing temperatures. Analyses of mutant plants have identified C-Repeat-binding factor (CBF)-dependent and CBF-independent signaling pathways in cold acclimation (Sharma et al. 2005), suggesting that plants use distinct mechanisms to respond to low temperature.There is increasing concern about the potential impact of global temperature changes, which significantly affect ambient temperature, on plant development. Several lines of evidence suggest that the recently observed alterations in the flowering times of many plant species and the increase in plant respiration rates are closely associated with these changes in ambient temperature (Fitter and Fitter 2002;Atkin and Tjoelker 2003). Although a great deal of progress has been made in our understanding of the regulation of plant development by low temperature, less is currently known about the molecular mechanisms underlying the responses of plants to changes in ambient temperature (Coupland and Prat Monguio 2005;Samach and Wigge 2005). Here, we show that the SHORT VEGETATIVE PHASE (SVP) gene mediates ambient temperature signaling in Arabidopsis and that the SVP-mediated control of FLOWERING LOCUS T (FT) expression is one of the molecular mechanisms evolved by plants to modulate the timing of the developmental transition to flowering phase in response to changes in the ambient temperature.
Results and DiscussionAs a first step to determining the mechanism underlying the perception and transduction of ambient temperature signaling in plants, we assessed mutants in known flowering time genes for their insensitivity to changes in ambient growth temperature. Of the flowering time mutants tested, one with a lesion in svp was indeed insensitive to such changes. The flowering of the majority of these flowering time mutants was noticeably delayed at 16°C, with flowering time ratios (16°C/23°C) ranging from 1.1 to 2.0 (Fig. 1A), the exception being ld-1. However,...