Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A crucial determining factor in agricultural productivity is biotic stress. In addition, supply of quality food to the ever-increasing world’s population has raised the food demand tremendously. Therefore, enhanced agricultural crop productivity is the only option to mitigate these concerns. It ultimately demanded the often and indiscriminate use of synthetic agrochemicals such as chemical fertilizers, pesticides, insecticides, herbicides, etc. for the management of various biotic stresses including a variety of plant pathogens. However, the food chain and biosphere are severely impacted due to the use of such harmful agrochemicals and their byproducts. Hence, it is need of hour to search for novel, effective and ecofriendly approaches for the management of biotic stresses in crop plants. Particularly, in plant disease management, efforts are being made to take advantage of newly emerged science i.e. nanotechnology for the creation of inorganic nanoparticles (NPs) such as metallic, oxide, sulphide, etc. through different routes and their application in plant disease management. Among these, green nanomaterials which are synthesized using environmentally friendly methods and materials reported to possess unique properties (such as high surface area, adjustable size and shape, and specific functionalities) making them ideal candidates for targeted disease control. Nanotechnology can stop crop losses by managing specific diseases from soil, plants, and hydroponic systems. This review mainly focuses on the application of biologically produced green NPs in the treatment of plant diseases caused due to bacteria, viruses, and fungi. The utilization of green synthesis of NPs in the creation of intelligent targeted pesticide and biomolecule control delivery systems, for disease management is considered environmentally friendly due to its pursuit of less hazardous, sustainable, and environmentally friendly methods.
A crucial determining factor in agricultural productivity is biotic stress. In addition, supply of quality food to the ever-increasing world’s population has raised the food demand tremendously. Therefore, enhanced agricultural crop productivity is the only option to mitigate these concerns. It ultimately demanded the often and indiscriminate use of synthetic agrochemicals such as chemical fertilizers, pesticides, insecticides, herbicides, etc. for the management of various biotic stresses including a variety of plant pathogens. However, the food chain and biosphere are severely impacted due to the use of such harmful agrochemicals and their byproducts. Hence, it is need of hour to search for novel, effective and ecofriendly approaches for the management of biotic stresses in crop plants. Particularly, in plant disease management, efforts are being made to take advantage of newly emerged science i.e. nanotechnology for the creation of inorganic nanoparticles (NPs) such as metallic, oxide, sulphide, etc. through different routes and their application in plant disease management. Among these, green nanomaterials which are synthesized using environmentally friendly methods and materials reported to possess unique properties (such as high surface area, adjustable size and shape, and specific functionalities) making them ideal candidates for targeted disease control. Nanotechnology can stop crop losses by managing specific diseases from soil, plants, and hydroponic systems. This review mainly focuses on the application of biologically produced green NPs in the treatment of plant diseases caused due to bacteria, viruses, and fungi. The utilization of green synthesis of NPs in the creation of intelligent targeted pesticide and biomolecule control delivery systems, for disease management is considered environmentally friendly due to its pursuit of less hazardous, sustainable, and environmentally friendly methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.