We investigated a nonlinear model of the interaction between nutrients and plankton, which was addressed using a pair of reaction-advection-diffusion equations. Based on numerical analysis, we studied a model without diffusion and sinking terms, and we found that the phytoplankton density (a stable state) increased with the increase of nutrient density. We analyzed the model using a linear analysis technique and found that the sinking of phytoplankton could affect the system. If the sinking velocity exceeded a certain critical value, the stable state became unstable and the wavelength of phytoplankton increased with the increase of sinking velocity. Furthermore, band patterns were also produced by our model, which was affected by the diffusion and sinking of phytoplankton. Thus, the change in the diffusion and sinking of phytoplankton led to different spatial distributions of phytoplankton. All of these results are expected to be useful in the study of plankton dynamics in aquatic ecosystems.