Understanding the environmental risks of soil heavy metals (HMs) and identifying their main sources are the essential prerequisites for the prevention and management of soil pollution. Based on a detailed survey of soil HMs (Cu, Cr, Ni, Zn, Pb, Cd, As and Hg) from different land use types (including agricultural land, construction land, wetland, and forest land) in an estuary alluvial island, the environmental risk and source apportionment of soil HMs were investigated. Altogether, 117 soil samples were taken in the study area to appraise the soil HMs environmental risk by using the geo-accumulation index (Igeo), potential ecological risk index (RI), and human health risk assessment (HRA) and to identify its main sources by using positive matrix factorization (PMF) model. The average concentrations of soil HMs (except As) surpassed their reference background values in China. There were no significant differenced in the mean concentrations of HMs in different land use types, except that the Hg concentration in the construction land was significantly higher than that in others. The results of Igeo showed that Cd pollution was unpolluted to moderately polluted, and that the others were unpolluted. The potential ecological risk level for Cd and Hg was “moderated potential risk”, while for Cu, Cr, Ni, Zn, Pb and As was “low potential risk”. Higher contamination was distributed at the west-central area. The results of the HRA indicated that the non-carcinogenic risk and the carcinogenic risk that human beings suffered from HMs in different land uses were insignificant. To more accurately identify the sources of soil HMs, the PMF model coupled with the GIS-spatial analysis was applied. The results showed that agricultural activities, natural source, industrial discharge and river transportation, and atmosphere deposition were the main determining factors for the accumulation of soil HMs in the study area, with the contribution rate of 24.25%, 23.79%, 23.84%, and 28.12%, respectively. The study provides an underlying insight needed to control of the soil HM pollutions for an estuary alluvial island.