Plant growth and physiology can be affected by environmental and chemical factors that have the potential to influence yields. Among the factors that influence plant growth, neonicotinoid seed treatments have shown significant effects on plant growth, particularly in cotton. The dual benefits seen from neonicotinoids on plant growth and insect control show promise in improving cotton yields but little is known about how different seed treatments affect seedling physiology. A greenhouse experiment was undertaken to investigate how three neonicotinoid seed treatments (clothianidin, thiamethoxam, and imidacloprid) affect the physiology and growth of cotton seedlings in controlled environmental conditions. A randomized complete block design was used to examine seed treatments and an untreated control. Cotton seeds were treated, grown, and evaluated for physiological changes until the fifth true leaf-stage and measurements were taken at each of these stages. Data were collected on plant height, shoot fresh weight, leaf area, root length, and root biomass. In addition, chlorophyll pigments and nutrient analysis were performed on cotton seedlings. The seedlings of imidacloprid treated seeds had greater height, shoot fresh mass, leaf area, and relative growth rate by the fifth true leaf stage compared to other treated plants; however, clothianidin showed comparative performance at earlier stages in plant development that equilibrated over time. While all neonicotinoid seed treatments showed positive effects, imidacloprid showed the most potential as a bioactivator on plant growth.