The family Poxviridae is a family of large, linear, doublestranded DNA viruses that carry out their entire life cycle within the cytoplasmic compartment of infected cells. Vaccinia virus (VACV) is a prototypical member of the genus Orthopoxvirus, which also includes the closely related cowpox virus (CPXV) (12, 52). The genomes of these viruses are approximately 200 kbp in length, with a coding capacity of approximately 200 genes. The genes involved in virus-host interactions are situated at both ends of the genome and are associated with the evasion of host immune defenses (1). These evasion mechanisms operate mainly extracellularly. For example, the secretion of soluble cytokine and chemokine receptor homologues blocks the receptor recognition by intercepting the cognate cytokine/chemokine in the extracellular environment.This mechanism facilitates viral attachment and entry into cells (1, 70). Therefore, decoy receptors for alpha interferon (IFN-âŁ), IFN-â¤, IFN-âĽ, and tumor necrosis factor alpha play an important immunomodulatory role by affecting both the host antiviral and apoptotic responses.To counteract the host proapoptotic response, poxviruses have developed a number of antiapoptotic strategies, including the inhibition of apoptotic signals triggered by the extrinsic pathway (those mediated by death receptors such as tumor necrosis factor and Fas ligand) or the intrinsic pathway (mediated by the mitochondria and triggered upon viral infection) (1,25,70,74). Many studies previously identified viral inhibitors that block specific steps of the intrinsic pathway. These include the VACV-encoded E3L, F1L, and N1L genes and the myxoma virus (MYXV)-encoded M11L gene, which block cytochrome c release (14,20,34,39,45,75,90), and the CPXVencoded cytokine response modifier gene (CrmA) as well as the VACV-encoded SPI-2 gene, which inhibits both caspase-1 and caspase-8 (25,58,61,74).An emerging body of evidence has also highlighted the pivotal role played by intracellular signaling pathways in Orthopoxvirus biology (18,48,92). We and others have shown that poxvirus manipulation of signaling pathways can be virus specific. For example, while both VACV and CPXV stimulate the