2021
DOI: 10.48550/arxiv.2109.03693
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction

Abstract: Traditional cortical surface reconstruction is time consuming and limited by the resolution of brain Magnetic Resonance Imaging (MRI). In this work, we introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface by a sequence of learned deformation blocks. A local convolutional operation is incorporated in each block to capture the multi-scale MRI information of each vertex … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?