Faceted browsing is widely used in Web shops and product comparison sites. In these cases, a fixed ordered list of facets is often employed. This approach suffers from two main issues. First, one needs to invest a significant amount of time to devise an effective list. Second, with a fixed list of facets it can happen that a facet becomes useless if all products that match the query are associated to that particular facet. In this work, we present a framework for dynamic facet ordering in e-commerce. Based on measures for specificity and dispersion of facet values, the fully automated algorithm ranks those properties and facets on top that lead to a quick drill-down for any possible target product. In contrast to existing solutions, the framework addresses e-commerce specific aspects, such as the possibility of multiple clicks, the grouping of facets by their corresponding properties, and the abundance of numeric facets. In a large-scale simulation and user study, our approach was, in general, favorably compared to a facet list created by domain experts, a greedy approach as baseline, and a state-of-the-art entropy-based solution. In this work use different types of metrics to score qualitative and numerical properties. For property ordering we want to rank properties descending on their impurity, promoting more selective facets that will lead to a quick drill-down of the results