<p style='text-indent:20px;'>In this paper, we give an upper bound (for <inline-formula><tex-math id="M1">\begin{document}$ n\geq3 $\end{document}</tex-math></inline-formula>) and the least upper bound (for <inline-formula><tex-math id="M2">\begin{document}$ n = 1,2 $\end{document}</tex-math></inline-formula>) of the number of limit cycles bifurcated from period annuli of a quadratic isochronous system under the piecewise polynomial perturbations of degree <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula>, respectively. The results improve the conclusions in [<xref ref-type="bibr" rid="b19">19</xref>].</p>