Percussive drilling is extensively used to drill hard rocks in the earth resource industry, where it performs best compared to other drilling technologies. In this paper, we propose a novel model of the process that consists of a drifting oscillator under impulsive loading coupled with a bilinear force/penetration interface law, together with a kinetic energy threshold for continuous bit penetration. Following the formulation of the model, we analyze its steady-state response and show that there exists a parallel between theoretical and experimental predictions, as both exhibit a maximum of the average penetration rate with respect to the vertical load on bit. In addition, existence of complex long-term dynamics with the coexistence of periodic solutions in certain parameter ranges is demonstrated.