It
is well-known that energy-rich radiation induces water splitting,
eventually yielding hydrogen peroxide. Synthetic applications, however,
are scarce and to the best of our knowledge, the combination of radioactivity
with enzyme-catalysis has not been considered yet. Peroxygenases utilize
H
2
O
2
as an oxidant to promote highly selective
oxyfunctionalization reactions but are also irreversibly inactivated
in the presence of too high H
2
O
2
concentrations.
Therefore, there is a need for efficient in situ H
2
O
2
generation methods. Here, we show that radiolytic water splitting
can be used to promote specific biocatalytic oxyfunctionalization
reactions. Parameters influencing the efficiency of the reaction and
current limitations are shown. Particularly, oxidative inactivation
of the biocatalyst by hydroxyl radicals influences the robustness
of the overall reaction. Radical scavengers can alleviate this issue,
but eventually, physical separation of the enzymes from the ionizing
radiation will be necessary to achieve robust reaction schemes. We
demonstrate that nuclear waste can also be used to drive selective,
peroxygenase-catalyzed oxyfunctionalization reactions, challenging
our view on nuclear waste in terms of sustainability.