Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Piezoelectric energy harvesting (PEH) has surfaced as an innovative technology for supplying power to low‐power electronic devices by converting mechanical energy into electrical energy. This technology utilizes the piezoelectric effect, in which specific materials produce an electric charge when they experience mechanical stress. Piezoelectric materials can be categorized into three main types: single crystal, composite, and polymeric. Single‐crystal materials exhibit elevated piezoelectric coefficients and stability; however, they tend to be costly and fragile. Composite materials integrate piezoelectric ceramics with polymer matrices, enhancing flexibility and lowering costs. Polymeric materials exhibit lightweight, flexible, and biocompatibility characteristics, rendering them ideal for wearable and implantable applications. Although PEH presents considerable promise, it is essential to tackle challenges, including low power output, material constraints, and environmental influences. Future investigations will focus on creating innovative materials that exhibit improved piezoelectric characteristics, refining device architecture for optimal energy conversion, and incorporating piezoelectric harvesting technology into intelligent systems. By addressing these challenges and investigating creative solutions, PEH can significantly advance sustainable and self‐powered electronic devices.
Piezoelectric energy harvesting (PEH) has surfaced as an innovative technology for supplying power to low‐power electronic devices by converting mechanical energy into electrical energy. This technology utilizes the piezoelectric effect, in which specific materials produce an electric charge when they experience mechanical stress. Piezoelectric materials can be categorized into three main types: single crystal, composite, and polymeric. Single‐crystal materials exhibit elevated piezoelectric coefficients and stability; however, they tend to be costly and fragile. Composite materials integrate piezoelectric ceramics with polymer matrices, enhancing flexibility and lowering costs. Polymeric materials exhibit lightweight, flexible, and biocompatibility characteristics, rendering them ideal for wearable and implantable applications. Although PEH presents considerable promise, it is essential to tackle challenges, including low power output, material constraints, and environmental influences. Future investigations will focus on creating innovative materials that exhibit improved piezoelectric characteristics, refining device architecture for optimal energy conversion, and incorporating piezoelectric harvesting technology into intelligent systems. By addressing these challenges and investigating creative solutions, PEH can significantly advance sustainable and self‐powered electronic devices.
As a complex electromechanical coupling system, evaluating the motion characteristics of an ultrasonic motor via an accurate theoretical model is challenging due to the strong coupling between its electrical and mechanical properties. To address this issue, the paper first establishes a complete dynamic model of the V-shaped ultrasonic motor (VUSM). In contrast to the traditional dynamic model, the proposed model incorporates the centroid vibration of the stator and applies the weighted residual method to reduce the computational complexity by simplifying the dynamic model from infinite-dimensional degrees of freedom to two degrees of freedom. Subsequently, the finite element method is employed to determine the vibration mode of the stator structure and derive the two-phase operational mode of the motor. Using these two-phase working modes, the model is then solved to predict the motor's output characteristics under any operational condition. Furthermore, an electrical model accounting for preload nonlinearity was developed based on the dynamic model and compared with the model without considering preload nonlinearity, supported by experimental verification. The findings demonstrate that the established dynamic model and electrical model can accurately simulate the changing laws of the input and output characteristics of the motor, which provides assistance for the subsequent operation status evaluation of the motor and fault diagnosis during operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.