Energy harvesting is an appealing technology that makes use of the ambient energy which is otherwise wasted. Piezoelectric materials directly convert the elastic energy to the electric energy, and thus have a great advantage in scavenging vibrational energy for simplicity in device structure with relatively high power density. This paper provides an overview on the research of piezoelectric materials in energy harvesting in recent decades, from basics of piezoelectricity and working principle of energy harvesting with piezoelectric materials, to the progress of development of high-performance piezoelectrics including ceramics, single crystals and polymers, then to experimental attempts on the device fabrication and optimization, finally to perspective applications of piezoelectric energy harvesting (PEH). The criteria for selection of materials for PEH applications are introduced. Not only the figure of merit but also maximum allowable stress of materials are taken into account in the evaluation of their potential in achieving high energy density and output power density. The influence of the device configuration on the performance is also acknowledged and discussed. The magnitude and distribution of induced stress in the piezoelectric unit upon excitation by the vibration source play an important role in determining the output power density and can be tuned via proper design of device configuration without changing its resonant frequency. Approaches to address the issue of frequency match accompanying with the resonant mode are illustrated with literature examples. Usage of PEH devices can be extended to a variety of vibration sources in everyday life as well as in nature. Some appealing applications of PEH, such as in implantable and wearable devices, are reviewed. energy harvesting, ferroelectric materials, piezoelectricity, figure of merit, applications Citation:Song J D, Wang J. Ferroelectric materials for vibrational energy harvesting.