Glucosamine (GlcN), which has previously been shown to rescue fruiting body formation, lysis, and sporulation in a developmental mutant (G. Janssen and M. Dworkin, Dev. Biol. 112:194-202, 1985), induced lysis in vegetative and developing wild-type cells and inhibited fruiting body formation. It also resulted in a transient, intracellular increase in the concentration of glycerol, a known sporulation inducer, and sporulation of the surviving cells. Phospholipase activity, which was shown to be normally developmentally regulated, increased 7.6-fold after treatment of vegetative cells with 50 mM GlcN. Likewise, autocidal activity, which normally increased 18 to 24 h after the initiation of development, increased 20% when vegetative or developing cells were exposed to GlcN. Two mutants resistant to GlcN-induced lysis (MD1021 and MD1022) were isolated and showed neither an increase in autocide production nor an increase in phospholipase activity in response to added GlcN. MD1021 was developmentally deficient, and GlcN rescued fruiting body formation as well as phospholipase activity and autocide production. We propose that GlcN exerts its lytic effect by regulating the activity of phospholipase enzymes that release autocides, compounds that are believed to be responsible for developmental autolysis. GlcN-induced sporulation was found to depend on several factors: the initial cell density, the amount of lysis induced by GlcN, and the presence of tan-phase variants. An initial cell density of greater than 2 x 105 cells per ml was required to support GlcN-induced sporulation, and sporulation did not occur unless 50 to 75% of these cells had Iysed. Mutants that were resistant to GlcN-induced lysis also did not sporulate in the presence of GlcN. The effects of GlcN on developing cells depended on the concentration of GlcN added; the addition of low concentrations of GlcN resulted in enhancement of sporulation, while higher concentrations resulted in the inhibition of sporulation. The ultrastructure of GlcN-induced spores resembled that of spores induced by the exogenous addition of glycerol, in contrast to spores isolated from mature fruiting bodies. A model by which GicN may regulate both lysis and sporulation is presented.