Our past work has shown that long, flexible type IV pili (single or in bundles) are the predominant pili expressed on fecal isolates of diarrhea-associated species of Aeromonas (Aeromonas veronii biovar sobria and A. caviae). They represent a family of type IV pili which we have designated Bfp (for bundle-forming pili). Reports from Japan suggest that Bfp are intestinal colonization factors. This study presents compelling evidence to support this conclusion. Aeromonas bacteria and/or Bfp purified from a strain of A. veronii biovar sobria were shown to adhere to epithelial and intestinal cell lines, freshly isolated human enterocytes, and fresh and fixed human and rabbit intestinal tissues, as determined by light and electron microscopy and immunohistochemical detection. Removal of Bfp by mechanical means decreased adhesion to cell lines by up to 80%. Purified Bfp blocked adhesion of the test strain to intestinal cells in a dose-dependent manner. Adhesion was also blocked by the Fab fraction of anti-Bfp immunoglobulin G. Moreover, ultrastructural studies (ruthenium red staining and transmission and scanning electron microscopy) demonstrated for the first time that Aeromonasadhesion to human enterocytes is pilus mediated and suggested that Bfp may also promote colonization by forming bacterium-to-bacterium linkages. Bfp-positive isolates examined for type IV pilus-mediated twitching motility in agar and slide culture assays developed forPseudomonas aeruginosa did not, however, exhibit this function.