In this paper, we analyze the throughput of multi-hop amplify and forward (AF) relay networks in delay-constrained scenario. Using quantized channel state information (CSI), the transmission rates and powers are discretely adapted with individual average power constraint on each node. A sub-gradient projection-based algorithm is utilized, by which there is no need for probability density functions (PDFs) to solve the optimization problem. Our numerical evaluations show that the sub-gradient projection-based algorithm results in a comparable performance with an analytical approach using PDFs. As shown, a considerably better performance obtained by the designed scheme compared to previous schemes with constant power transmission. More than 70% throughput improvement is achieved by our scheme compared to constant power transmission with just two more feedback bits and a short training time required at the beginning of the transmission.