Au-based catalysts supported on carbon materials with different structures such as graphite (G) and fishbone type carbon nanofibers (CNF-F) were prepared using two different methods (impregnation and gold-sol) to be tested in the water gas shift (WGS) reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), Raman spectroscopy, elemental analyses (CNH), N 2 adsorption-desorption analysis, temperature-programmed reduction (TPR) and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.