During programmed cell death, caspases degrade 7 out of ~30 nucleoporins (Nups) to irreversibly demolish the nuclear pore complex (NPC). However, for poorly understood reasons, caspases are also activated in differentiating cells in a non-apoptotic manner. Here, we describe reversible, caspase-mediated NPC "trimming" during early myogenesis. We find that sublethal levels of caspases selectively proteolyze 4 peripheral Nups, Nup358, Nup214, Nup153, and Tpr, resulting in the transient block of nuclear export pathways. Several nuclear export signal (NES)-containing focal adhesion proteins concomitantly accumulate in the nucleus where they function as transcription cofactors. We show that one such protein, FAK (focal adhesion kinase), drives a global reconfiguration of MBD2 (methyl CpG binding domain protein 2)-mediated genome regulation. We also observe caspase-mediated NPC trimming during neurogenesis and endoplasmic reticulum (ER) stress. Our results illustrate that the NPC can be proteolytically regulated in response to non-apoptotic cues, and call for a reassessment of the death-centric view of caspases.