The pore-forming ␣-subunits of large conductance calcium-and voltage-activated potassium (BK) channels are encoded by a single gene that undergoes extensive alternative pre-mRNA splicing. However, the extent to which differential exon usage at a single site of splicing may confer functionally distinct properties on BK channels is largely unknown. Here we demonstrated that alternative splicing at site of splicing C2 in the mouse BK channel C terminus generates five distinct splice variants: ZERO, e20, e21(STREX), e22, and a novel variant ⌬e23. Splice variants display distinct patterns of tissue distribution with e21(STREX) expressed at the highest levels in adult endocrine tissues and e22 at embryonic stages of mouse development. ⌬e23 is not functionally expressed at the cell surface and acts as a dominant negative of cell surface expression by trapping other BK channel splice variant ␣-subunits in the endoplasmic reticulum and perinuclear compartments. Splice variants display a range of biophysical properties. e21(STREX) and e22 variants display a significant left shift (>20 mV at 1 M [Ca 2؉ ] i ) in half-maximal voltage of activation compared with ZERO and e20 as well as considerably slower rates of deactivation. Splice variants are differentially sensitive to phosphorylation by endogenous cAMP-dependent protein kinase; ZERO, e20, and e22 variants are all activated, whereas e21 (STREX) is the only variant that is inhibited. Thus alternative pre-mRNA splicing from a single site of splicing provides a mechanism to generate a physiologically diverse complement of BK channel ␣-subunits that differ dramatically in their tissue distribution, trafficking, and regulation.Large conductance calcium-and voltage-activated potassium (BK) 3 channels are uniquely regulated by changes in both transmembrane potential as well as intracellular free calcium levels (1). They are widely expressed and thus play an important role in the modulation of cellular excitability in many tissues. Hence, they control diverse physiological processes, including regulation of vascular tone (2-4), micturition (5), neuronal excitability (6, 7), neurotransmitter release (8, 9), endocrine function (10 -12), innate immunity (13), and hearing (14, 15).BK channels in native tissues display a physiologically diverse array of phenotypes. Even neighboring cells (16, 17), or compartments within cells (18,19), may express BK channels with differences in their functional properties. Furthermore, these properties can be modified temporally, for example, during development (20 -22) or following a physiological challenge (23-27).At least two major post-transcriptional mechanisms are involved in generating such functional diversity as follows: alternative pre-mRNA splicing of BK channel pore-forming ␣-subunits and assembly of ␣-subunits with a family of transmembrane modulatory -subunits. Although ␣-subunits are encoded by a single gene (1, 28 -30) (KCNMA1, also referred to as Slo), -subunits are encoded by four distinct genes (KCNMB1-4) (31-34).Several sites o...