In cerebellar granule neurons, a BH3-only Bcl-2 family member, death protein 5/harakiri, is up-regulated in a JNK-dependent manner during apoptosis induced by potassium deprivation. However, it is not clear whether c-Jun is directly involved in the induction of dp5. Here, we showed that the up-regulation of dp5, but not fas ligand and bim, after potassium deprivation was suppressed by the expression of a dominant negative form of c-Jun. Deletion analysis of the 5-flanking sequence of the dp5 gene revealed that a major responsive element responsible for the induction by potassium deprivation is an ATF binding site located at ؊116 to ؊109 relative to the transcriptional start site. Mutation of this site completely abolished promoter activation. Furthermore, a gel shift assay showed that a specific complex containing c-Jun and ATF2 recognized this site and increased in potassium-deprived cerebellar granule neurons. Chromatin immunoprecipitation demonstrated that c-Jun was able to bind to this site in vivo. Finally, we demonstrated that knockdown of Dp5 by small interfering RNA rescued neurons from potassium deprivation-induced apoptosis. Taken together, these results suggest that dp5 is a target gene of c-Jun and plays a critical role in potassium deprivation-induced apoptosis in cerebellar granule neurons.The Bcl-2 family proteins can be divided into three major subgroups (1). Antiapoptotic proteins, such as Bcl-2, Bcl-X L , and Mcl-1, typically share four conserved motifs termed Bcl-2 homology (BH) 3 domains and inhibit mitochondrial cytochrome c release and apoptosis. Multidomain proapoptotic proteins, the second subgroup, such as Bax, Bak, and Bok, typically have three BH domains but promote cytochrome c release and apoptosis. The third, and the most structurally diverse subgroup, is the BH3-only proteins, including Dp5/HRK (death protein 5/harakiri), Bim (Bcl2-interacting mediator of cell death), Bid, Bad, Puma, and Noxa, which share the BH3 domain. The BH3-only proteins are critical initiators of apoptosis. Upon challenge, BH3-only proteins translocate to mitochondria and promote the chromec release by neutralizing the antiapoptotic action of Bcl-2 family members. BH3-only proteins are stringently regulated at the transcriptional and post-translational levels during apoptosis, such as Dp5, Bim, and Puma, depending on the cell type and apoptotic stimulus (2-6). Among the BH3-only proteins, Dp5 is of particular interest to studies of apoptosis in the nervous system. In rodents, the expression of Dp5 is largely restricted to and is developmentally regulated in the nervous system (2, 7). Dp5 is the first found BH3-only protein to be induced by NGF deprivation in sympathetic neurons (2). dp5 is highly homologous to the human gene harakiri (HRK) cloned by a two-hybrid screen with Bcl-2 and Bcl-X L (3). As well as being induced in NGF-deprived sympathetic neurons, the induction of dp5 is also observed in cerebellar granule neurons (CGNs) deprived of potassium, cortical neurons exposed to toxic concentrations of amyl...