With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their lifecycle. Despite this near universal requirement for sexual reproduction, there exists an incredible diversity in germ-line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, non-reproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes – germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early – at the 32 cell stage – and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal to embryonic transition. We collectively refer to this model as the Time Capsule method for germ line determination.