Pixel-MPS: Stochastic Embedding and Density-Based Clustering of Image Patterns for Pixel-Based Multiple-Point Geostatistical Simulation
Adel Asadi,
Snehamoy Chatterjee
Abstract:Multiple-point geostatistics (MPS) is an established tool for the uncertainty quantification of Earth systems modeling, particularly when dealing with the complexity and heterogeneity of geological data. This study presents a novel pixel-based MPS method for modeling spatial data using advanced machine-learning algorithms. Pixel-based multiple-point simulation implies the sequential modeling of individual points on the simulation grid, one at a time, by borrowing spatial information from the training image and… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.