Abstract:There are several problems with the robustness of Convolutional Neural Networks (CNNs). For example, the prediction of CNNs can be changed by adding a small magnitude of noise to an input, and the performances of CNNs are degraded when the distribution of input is shifted by a transformation never seen during training (e.g., the blur effect). There are approaches to replace pixel values with binary embeddings to tackle the problem of adversarial perturbations, which successfully improve robustness. In this wor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.