2022
DOI: 10.48550/arxiv.2209.07578
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Pixel-wise classification in graphene-detection with tree-based machine learning algorithms

Abstract: Mechanical exfoliation of graphene and its identification by optical inspection is one of the milestones in condensed matter physics that sparked the field of 2D materials. Finding regions of interest from the entire sample space and identification of layer number is a routine task potentially amenable to automatization. We propose supervised pixel-wise classification methods showing a high performance even with a small number of training image datasets that require short computational time without GPU. We int… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?