Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.