Numerous skarn-type Sn deposits have been identified in the Nanling Range (South China), of which the Shizhuyuan W-Sn-Bi-Mo, Xianghualing Sn, Jinchuantang Sn-Bi, and Hehuaping Sn deposits are the largest. The Xianghualing deposit, which is the focus of this study, hosts a resource of 0.17 Mt Sn grading 0.93-1.39 wt% SnO 2 .Whether the distal skarn-type mineralization and the cassiterite-sulfide vein-type orebody in the Xianghualing district are genetically related to the Laiziling granitic pluton, which produced the proximal skarn-type Sn mineralization, however, is still unknown. The Xianghualing Sn mineralization occurs exclusively as cassiterite and has been subdivided into four ore-types: (1) lenticular proximal skarn ore (Cst I) containing the mineral assemblage cassiterite-pyrrhotite-chalcopyrite-actinolitewollastonite; (2) layered distal skarn ore (Cst II) containing the mineral assemblage cassiterite-pyrrhotite-chalcopyrite-actinolite; (3) vein cassiterite-sulfide ore (Cst III) distal from the skarn and associated granite containing the mineral assemblage cassiterite-arsenopyrite-pyrrhotite-muscovite-fluorite; and (4) veinlet Sn-Pb-Zn ore (Cst IV) distal from the skarn and associated granite containing the mineral assemblage cassiterite-galena-sphalerite-topaz-quartz. Here, we report the results of in situ laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) U-Pb age determinations for garnet from the Xianghualing skarn and the above four types of cassiterite. Our age determinations indicate that there were two independent magmatic-hydrothermal events at ~160 and 156~150 Ma, both of which led to Sn mineralization. The first Sn mineralization event at ~160 Ma (Cst IV U-Pb ages of This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.